Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain.
نویسندگان
چکیده
The main protease (M(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. It was found that SARS-CoV M(pro) exists in solution as an equilibrium of both monomeric and dimeric forms, and the dimeric form is the enzymatically active form. However, the mechanism of SARS-CoV M(pro) dimerization, especially the roles of its N-terminal seven residues (N-finger) and its unique C-terminal domain in the dimerization, remain unclear. Here we report that the SARS-CoV M(pro) C-terminal domain alone (residues 187 to 306; M(pro)-C) is produced in Escherichia coli in both monomeric and dimeric forms, and no exchange could be observed between them at room temperature. The M(pro)-C dimer has a novel dimerization interface. Meanwhile, the N-finger deletion mutant of SARS-CoV M(pro) also exists as both a stable monomer and a stable dimer, and the dimer is formed through the same C-terminal-domain interaction as that in the M(pro)-C dimer. However, no C-terminal domain-mediated dimerization form can be detected for wild-type SARS-CoV M(pro). Our study results help to clarify previously published controversial claims about the role of the N-finger in SARS-CoV M(pro) dimerization. Apparently, without the N-finger, SARS-CoV M(pro) can no longer retain the active dimer structure; instead, it can form a new type of dimer which is inactive. Therefore, the N-finger of SARS-CoV M(pro) is not only critical for its dimerization but also essential for the enzyme to form the enzymatically active dimer.
منابع مشابه
Without its N - Finger , SARS - CoV Main Protease 1 can Form a Novel Dimer through its C - Terminal Domain
Abbreviations: 17 severe acute respiratory syndrome, SARS; SARS coronavirus, SARS-CoV; main protease, M; 18 wild-type, WT; ethylene glycolbis succinimidylsuccinate, EGS; 1,4-Dithiothreitol, DTT; 19 2,2-dimethyl-2-silapentanesulfonic acid , DSS; mass spectrometry, MS; fast protein liquid 20 chromatography system, FPLC; nuclear magnetic resonance, NMR; heteronuclear 21 single-quantum coherence, H...
متن کاملCritical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease.
The severe acute respiratory syndrome (SARS) coronavirus (CoV) main protease represents an attractive target for the development of novel anti-SARS agents. The tertiary structure of the protease consists of two distinct folds. One is the N-terminal chymotrypsin-like fold that consists of two structural domains and constitutes the catalytic machinery; the other is the C-terminal helical domain, ...
متن کاملReversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.
Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed cl...
متن کاملRecombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The viral nucleocapsid (N) protein plays an essential role in viral RNA packaging. In this study, recombinant SARS-CoV N protein was shown to be dimeric by analytical ultracentrifugation, size exclusion chromatography coupled with light scattering, and chemical cross-linking. Dimeric N ...
متن کاملIdiosyncrasies of COVID-19; A Review
The Coronavirus disease 2019, identified by Chinese researchers to be the caused by a novel enveloped betacoronavirus, Severe Acute Respiratory Syndrome Coronavirus- 2 which was first isolated in Wuhan, China has been declared a global pandemic by the world health organization. The virus has several structural proteins that contributed to its pathogenesis such as spikes, membrane, envelop and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 9 شماره
صفحات -
تاریخ انتشار 2008